Hierarchical Krylov and nested Krylov methods for extreme-scale computing

نویسندگان

  • Lois C. McInnes
  • Barry Smith
  • Hong Zhang
  • Richard Tran Mills
چکیده

The solution of large, sparse linear systems is often a dominant phase of computation for simulations based on partial differential equations, which are ubiquitous in scientific and engineering applications. While preconditioned Krylov methods are widely used and offer many advantages for solving sparse linear systems that do not have highly convergent, geometric multigrid solvers or specialized fast solvers, Krylov methods encounter well-known scaling difficulties for over 10,000 processor cores because each iteration requires at least one vector inner product, which in turn requires a global synchronization that scales poorly because of internode latency. To help overcome these difficulties, we have developed hierarchical Krylov methods and nested Krylov methods in the PETSc library that reduce the number of global inner products required across the entire system (where they are expensive), though freely allow vector inner products across smaller subsets of the entire system (where they are inexpensive) or use inner iterations that do not invoke vector inner products at all. Nested Krylov methods are a generalization of inner-outer iterative methods with two or more layers. Hierarchical Krylov methods are a generalization of block Jacobi and overlapping additive Schwarz methods, where each block itself is solved by Krylov methods on smaller blocks. Conceptually, the hierarchy can continue recursively to an arbitrary number of levels of smaller and smaller blocks. As a specific case, we introduce the hierarchical FGMRES method, or h-FGMRES, and we demonstrate the impact of two-level h-FGMRES with a variable preconditioner on the PFLOTRAN subsurface flow application. We also demonstrate the impact of nested FGMRES, BiCGStab and Chebyshev methods. These hierarchical Krylov methods and nested Krylov methods significantly reduced overall PFLOTRAN simulation time on the Cray XK6 when using 10,000 through 224,000 cores through the combined effects of reduced global synchronization due to fewer global inner products and stronger inner hierarchical or nested preconditioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology

Algebraic solvers based on preconditioned Krylov subspace methods are among the most powerful tools for large scale numerical computations in applied mathematics, sciences, technology, as well as in emerging applications in social sciences. As the name suggests, Krylov subspace methods can be viewed as a sequence of projections onto nested subspaces of increasing dimension. They are therefore b...

متن کامل

On the Numerical Stability Analysis of Pipelined Krylov Subspace Methods

Algebraic solvers based on preconditioned Krylov subspace methods are among the most powerful tools for large scale numerical computations in applied mathematics, sciences, technology, as well as in emerging applications in social sciences. The study of mathematical properties of Krylov subspace methods, in both the cases of exact and inexact computations, is a very active area of research and ...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Communication Avoiding ILU0 Preconditioner

We present a communication avoiding ILU0 preconditioner for solving large systems of linear equations by using iterative Krylov subspace methods. Recent research has focused on communication avoiding Krylov subspace methods based on so called s-step methods. However there is no communication avoiding preconditioner yet, and this represents a serious limitation of these methods. Our precondition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Parallel Computing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2014